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Schrfdinger and Dirac Quantum Random Walks 
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Quantum random walks, whose amplitude evolutions are given by generalizations 
of discrete versions of Schr6dinger and Dirac equations, are constructed. The 
results are given in three dimensions and it is shown that they cannot be reduced 
to stochastically independent one-dimensional motions. Properties of these quan- 
tum random walks are analyzed and expressions for their characteristic functions 
and free propagators are derived. 

1. INTRODUCTION 

It is well known that Brownian motion is associated with the diffusion 
and heat equations. Since Brownian motion is a limit of random walks, a 
random walk is associated with discrete versions of these equations. One 
might ask whether an analogous situation occurs for the Schr6dinger and 
Dirac equations. Nakamura (1991) has recently shown that there exists a 
quantum stochastic process whose associated evolution is given by the free 
one-dimensional Schrtdinger equation. Moreover, he proved an analogous 
result for the one-dimensional Dirac equation. 

In the present work, we consider generalizations of discrete versions 
of the three-dimensional Schrtdinger and Dirac equations and construct 
quantum random walks whose amplitude evolutions are given by these equa- 
tions. We analyze the properties of these quantum random walks and derive 
expressions for their characteristic functions and free propagators. For 
other approaches to those problems we refer the reader to the references in 
Nakamura (1991). For a general discussion of quantum stochastic pro- 
cesses, the reader may want to consult Gudder and Schindler (1991, 1992) 
and Marbeau and Gudder (1989, 1990). 
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2. SCHRODINGER RANDOM WALKS 

Let a be a positive real number, N a positive integer, and s= 1/N. We 
define the finite discrete timeline T by 

r = { 0 ,  s, 2 s , . . . , N 2 e } =  , ~V, N . . . .  , N  

and the discrete space lattice 
/ \1/2 

Q~ = (ac)1/2~? = IN) 77 

We now construct a quantum random walk on the spacetime lattice L = 
T x Q3. The sample space f~ is given by 

n = [ ( { 1 , 2 ,  3} x {-1 ,  1 } ) u  {0}]r 

For  teT,  coef~, if oJ( t )#0,  we write o~(t)=(o~l(t),co2(t)), where 
o~l(t)e{1, 2, 3} and co2(t)e{-1, 1}. For r =  1,2, 3, we def ineXr:Txf~-- ,Q 
by 

k-I  
Xr(k~,, (.0) = (aE) '/2 Z {~ : (o(js) #0, o ' ( j e )  = r} 

j=O 

if k # 0  and X'(0,  co)= 0. Finally, we define the random walk X: Tx  f~ ~ Q3 
by 

X(ke, co)=(Xl(ke, (.0), X2(k/; ,  (.0), X3(kt?, (o)) 

The random walk X has the following physical interpretation. At each 
time step te  T, toss a seven-sided die whose faces are labeled by the elements 
of  the set 

S=({1 ,  2, 3} x {-1 ,  1} )w {0} 

A particle begins at the origin at time t = 0. If  the toss at time t results in 0, 
the particle pauses (does not change position); if the toss results in (r, :1:1), 
the particle moves + (a t )  ~/2 units in the x r direction, r =  1, 2, 3. In the sequel, 
we shall need the notation IAI for the cardinality of  a set A. 

Until now we could just as well be describing a classical random walk 
since we have not yet placed a measure on ft. In order to describe a quantum 
random walk, we define an amplitude function on f~ instead of  a probability 
measure. Let aj , j=  0 . . . .  ,6, be complex numbers satisfying y'6=0 a j =  1 and 
let f '  :S --* C be defined by f'(O) = ao, f ' ( ( j ,  1)) = aj, f ' ( ( j ,  - 1 ) )  = aj+3, j =  
1, 2, 3. Define the amplitude function f :  ~ --* C by 

f(oJ) =f'[o, (u%)]f'[o,  ( (N 2 - 1) e ) l " "  f'[co ( e)]f'[co(0)] 
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It follows by induction that for any distinct r~ E . . . . .  r, ee T we have 

f'[o~(rl e)] �9 . �9 f'[o~(r.e)] = 1 (2.1) 
oJ 

For a set A _cO, we define the amplitude f (A )  of A by f(A)=~o,~A f(og). 
Applying (2.1) gives f ( I '~ )=  1. Moreover, it is clear that f : 2 n ~  C is an 
additive complex measure. 

The map X: Tx  I'~ ~ Q3 describes a quantum particle with initial posi- 
tion 0. For  y e Q 3, the map y + X : T x f~ ~ Q3 defined by 

(y+ X)(t ,  co)=y+ X(t, r 

describes a quantum particle with initial position y. For teT,  the map 
y + X , : ~ - ~  Q3 defined by ( y + X t ) ( c o ) = y + X ( t ,  co) is called the position 
measurement at time t. Notice that y+X,  corresponds to a classical random 
variable. For coe~,  the map y + X o , : T ~ Q  3 defined by (y+Xo,)(t) = 
y + X( t, co) is called a path starting at y. 

Let V: R a ~ ~ be  a function which we view as a potential energy. For 
t = kee  T, we define the propagator Kv,,: Q3 x ~ ~ C by 

k - I  

Kr, t(y, o~)=f(r ]-I [1-ieV(y+Xo,(j~))]  
j=o 

for k r  and Kv.o(y, o)=f(co) .  We interpret Kv,,(y, co) as the amplitude 
that a particle under the influence of  the potential V moves along the path 
y+Xo, during the time interval from 0 to t. Notice that for V=0,  the 
free propagator K0.t becomes K0.,(y, co)=f(co).  Let g: R 3 ~  C be a function 
which we view as the initial amplitude. We then define the evolution 
Uv,,g: Q3 ~ C. by 

(Uv.,g)(x) = ~ {Kv,,(y, co)g(y): y~Qa, y+ X~o(t)=x} (2.2) 
y,~O 

Notice that there are only a finite number of  terms in the summation (2.2), 
since there are only finitely many starting points y e Q3 that can reach x in 
time t along a path. We interpret (Uv,,g)(x) as the amplitude that a particle 
is at x at time t when the initial amplitude is g. The function Ur, tg gives the 
amplitude distribution of  the measurement Xt. Let ~0: R ~ ~ C be defined by 

{10 if Y=0  
So(y) = otherwise 

We use the nota t ionfv, , (x)= (Uv.,60)(x). It follows from (2.2) that 

fo,,(x) = Z  {f(co):X~,(t) =x} 
to 
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As is usual in quantum probability, we interpret R(t, x ) =  I(Uv,,g)(x)l 2 
as the relative probability that a particle is at position x at time t. Without 
a further assumption on g, we cannot normalize R(x, t) to obtain an absolute 
probability. However, if we assume that g has compact support, then R(t, x) 
vanishes except for finitely many xe  Q3. We can then define the probability 
that a particle is at x at time t as 

R(t, x) 
e (  t, x )  - ~y R( t, y) 

We shall soon show that the evolution satisfies a discrete version of 
Schr6dinger's equation. To see that this is reasonable, let us roughly consider 
what happens when N ~  oo or ~ ~ 0. For simplicity, suppose g -  t$o. Assum- 
ing V is continuous, for e small we have 

1 - i6V(Xo,(j6)) ,~exp[-i~V(X,o(je))] 

Hence, 

k - 1  

Kv,,(O, co),~ f(co) H exp[-ieV(Xo~(je))] 
j=0  

] =f( ro)  exp - i  2 eV(Xo~(je)) 
j=O 

We then have 

It follows that (2.2) is a discrete analog of the Feynman path integral. 
Let e~, e2, e3 be the standard unit vectors in •3 and let e j+3=-e j ,  

j =  1, 2, 3, and eo=0. A point x~Q 3 then has the six nearest neighbors 
x + (ae)l/2ej, j =  1 . . . . .  6, and x = x + (at)~/2eo. 

Theorem 2.1. The evolution U(t, x)= (Uv.,g)(x) satisfies the initial con- 
dition U(O, x)=g(x) and the difference equation 

6 
U(t + e, x) = ~ a,[1 - i~V(x-  (ae,)l/2er)] U(t, x -  (a6)U2er) 

r~O 



Schrfdinger and Dirac Quantum Random Walks 

Proof. For the initial condition we have from (2.2) that 

U(O, x) = ~, f(co )g(x) = g(x) 
r 

To derive the difference equation, applying (2.2) gives 

U(t + 6, x ) = ~  {Kv, t+ ,(y, co)g(y): yeQ3, y+ Xo,(t + 6) =x} 
6 

= E E Kva+,(Y, co,)g(y) 
r = 0  y,o) r 

where in addition to the condition 

t h e  (_o r satisfy 

y+X( t+  6, cot) =x 

y+X(t ,  r r = 0  . . . . .  6 

If  t=k6, we have 
k 

Kv.t+~(y, coo)=f'(coo) H [ 1 - i 6 V ( y + X ( j 6 ,  coo))] 
j = 0  

k - I  

=f '(coo)[1-i6V(x)]  I~ [ 1 - i e V ( y + X ( j 6 ,  coo))] 
j = 0  

= [1 - ie V(x)]Kv, t(y, r 

For a fixed yeQ3 we have by (2.1) that 

~. Kv,,+ ~(y, coo)= [1 - i6V(x)]  • Kv, t(y, coo) 
OJ 0 OJ 0 

= [1 - i6V(x)]ao ~ {Kr.,(y, co): y+X,( t )  =x} 
o) 

Hence, 

1977 

Kv,,+ ~(y, coo)g(Y) = [1 - i6V(x)]aoU(t, x) 
y ,  CaO 

In a similar way, for r = 1 . . . . .  6, we have 

~. Kv.,+ ~(y, co,)g(y) = [1 - i 6V(x -  (ae)'/2e,)]a,U(t, x -  (a6)~/2e,) 
y ,  OJr 

and the result follows. [] 

We say that the amplitude funct ionf is  symmetric if aj = aj+a , j= 1, 2, 3. 
In the case of  a symmetric f ,  the difference equation in Theorem 2.1 has a 
special form. 
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Corollary 2.2. If  f is symmetric, then U(t, x) satisfies the equation 

U(t+ ~, x) - U(t, x) 

E 

3 U(t, x+(at)l /2e~)+ U(t, x - (a t ) J /2e r ) -2U( t ,  x) 
=a ~. ar 

r = l  a t  

6 
- i ~, a , V ( x -  (at)l/2e,) U(t, x -  (at)l/2er) 

r=O 

(2.3) 

Proof  Applying Theorem 2.1 gives 

U(t+ t,  x) 
6 

= ~ arU(t, x -  (at)l/2er) 
r=O 

6 

- ie ~, a , V ( x -  (at)l/2er) U(t, x -  (at)l/2er) 
r=O 

= 1 - ar U(t, x) + ~ a~U(t, x -  (ae)l/2e,) 
r = l  r = l  

6 

- i t  2 a , V ( x -  (at)'/2e~) U(t, x -  (at)l/2er) 
r=O 

6 

= U(t, x )+  ~, ar[U(t, x-(at) l /2e~)  - U(t, x)] 
r = l  

6 

- i t  ~ Olr V ( x  - (at)l/2er) U(t, x -  (ae)l/2e~) 
r=O 

3 
= U(t, x )+  ~, ct~[U(t, x+(at) l /2er)+ U(t, x-(at)U2e~) - 2 U ( t ,  x)] 

r = l  

6 
- i t  ~ arV(x- (a t ) l /2e , )U(  t, x-(at) l /2e~)  

r=O 

and the result follows. �9 

That (2.3) is a discrete version of a generalized Schr6dinger equation 
may be seen as follows. Suppose V is continuous and U has a twice differen- 
tiable extension u: R x R 3 --, C. The left side of (2.3) is the forward difference 
and corresponds to Ou/Ot. The terms in the first summation on the right side 
of (2.3) are central differences and correspond to 02u/(axr) z. Since V is 
continuous, letting t--.  0, each term in the second summation on the right 
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side of (2.3) reduces to V(x)U(t, x). Hence, (2.3) corresponds to the partial 
differential equation 

Ou 3 8Zu 
i - -= ia  ~ ar + Vu (2.4) 

Ot ,=l 

I f  ar = i, r = 1, 2, 3, a0 = 1 - 6i, then (2.4) reduces to Schrfdinger's equation. 
There are many choices for the a ,  which result in Schrfdinger's equation. 
However, they must have the form a,=ib, a0 = 1-6ib,  r= 1, 2, 3, b>0 .  Also 
note that if ar = 1/6, r =  1, 2, 3, then we obtain a classical probability space 
and if we replace V by - iV,  we get the heat equation. 

So far we have discussed the three-dimensional quantum random walk 
X: Txf~--} Q3. It is also instructive to consider the corresponding one- 
dimensional quantum random walk XI : T • f~ ---} Q. In the next section, we 
shall show that X' ,  r = 1, 2, 3, are stochastically dependent isomorphic copies 
of  XI. In the one-dimensional case, the sample space is given by ~ = 
{-1,  0, 1} 7. We then define X~: T• f~ --, Q by 

k-I  
Xl(kE, c~ '/2 Z to(jE) 

j = O  

Let a0, a l ,  a2eC and d e f i n e f ' : { - 1 ,  O, 1} ---,C b y f ' ( l ) = a l , f ' ( - 1 ) = a 2 ,  
f'(O) = ao = 1 - al - a2. We then define the amplitude function f : f~  ~ C as 
before. We also define Kv.,: Q x I) --, C and Uv.,g: Q x ~ --, C in an analogous 
fashion. If  a~ = a2, the difference equation (2.3) now becomes 

v ( t  + ~, x) - v( t ,  x) 

U(t, x+ (ae,) 1/2) + U(t, x -  (ae) J/2) - 2 U(t, x) 
. ~  a a  I 

a g  

- ia[  V(x + (ae)'/2)U( t, x + (ae)'/2) + V(x-(ag)l/2)U(t, x-(ae)l/2)] 

- iao V(x) U(x) 

If  a~ = i/2 (or, more generally, a~= ib, b > 0), this corresponds to the one- 
dimensional Schr6dinger equation. 

3. PROPERTIES 

If  X and f are defined as in Section 2, we call ( X , f )  a Schr6dinger 
random walk. In this section we shall not introduce a potential V, so we are 
really considering the random motion of  a free particle. We shall show that 
( X , f )  has many of  the properties of  a classical random walk except that 
the usual probability measure is replaced by the amplitude measure 
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f(A)=~oEA f (~) .  Since a classical random walk is a discrete version o f  
Brownian motion, this shows that the Schr6dinger random walk may be 
regarded as a discrete quantum Brownian motion. 

For integers O < s < t < N  2, the increment A'~X:~-*Q 3 is defined as 
A'~X=X,E-X~. An increment has three components denoted by 

(A'~X)" =X~,~-X~,  r = 1, 2, 3 

Notice that 
t - - |  

(A'X)'(co) = (ae) '/2 Z {c~ : co(jr #0,  ca'(je) = r} 

For A ~_ Q3, we use the notation 

f (A ' ,XeA)  =f({oJ e n :  A:X(co) eA } ) =f[(A',X)-t(A)] 

It is clear that ( X , f )  is stationary. That is, 

f (A ' ,XeA)  = f(A'o-'XeA) = f(X(t_,)~eA) 

We next show that increments are amplitude independent. That is, if 
s~ < t~ <s2 < t2 <_" �9 �9 <_ s, < t, are integers and A t , . .  �9 A, =_ Q3, then 

/t  

t t  . ~ ti  f(As, X e A t , . .  A~",XeA,)= I-I f (A#XeAj )  
j = l  

Theorem 3.1. The increments of X are amplitude independent. 

Proof. Let sl<tt<s2<t2 and let k~, j = l , 2 ,  r = 1 , 2 , 3 ,  be integers 
satisfying 

-(tFsj)<_k;<O-sj 

We then have 
t t - -  t / 2  I 3 t2 ~ 1 / 2  I f ( A , , X - ( a e )  ( k t , ~ , k t ) , A , 2 X - ( a e )  ( k 2 , ~ , ~ ) )  

= E  {f(o~) : to eA~, toeAi, r=  1, 2, 3) 

where 

A{o o } r _ _  . {co2(js): o~,(jt:)=r}=kr 
J ~ $ i  

It follows from (2.1) that 

Z {f(co) : co cA;,  ~eA~, r = l ,  2, 3} 

= Z  {f(~) :  o~eA;, r=  1, 2, 3} Y~ {f(co): o~ eA~, r=  1,2, 3} 
_ _  t l  _ _  1 / 2  1 ta  ~ I / 2  1 - f ( A ~ , X - ( a e )  ( k , , ~ , ~ ) ) f ( A ~ , X - ( a s )  (k2, k 2 ,~ ) )  
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We have thus shown that for every a, b e Q3 we have 

t l  ~ t2 - -  - -  t l  - -  t2 f(A,, X -  a, A a X -  b) - f(A,, X - a) f (A,2X-  b) (3.1) 

Now let A,B~_Q 3 with A={al  . . . .  ,ap}, B={bl . . . . .  bq}. Applying 
(3.1) and the additivity of  the measure f gives 

f( , ,  ( , , -  , , -  ) A,,XeA, A ~ X e B ) = f  U (A, ,X-a j )  n U (A,~X-bk) 
j k 

= Y', f ( A t l  X = a+, At~X = b, )  
j , k  

= E f(At~ X = aj)f(A'] X = bk) 
j , k  

= E  f(At~,X=aj) ,, _ E f ( A , 2 X -  bk) 
j k 

_ t !  t 2 - f (A~,XeA)f(A~2XeB) 

We have thus proved the result for two increments. The proof for n incre- 
ments is similar. I 

We now find the amplitude distribution ft(x) of  X, where te T, xe  Q3, 
and 

f ( x )  = f(X~ = x )  = Z {f(r : Xt (m)  = x}  
o) 

For simplicity, we assume in the remainder of  this section tha t f i s  symmetric 
and ar = i/2, r = 1, 2, 3, ao = 1 - 3i. We have seen in Section 2 that such an 
amplitude function results in a discrete version of  Schr6dinger's equation. 
We then have 

where 

a =l{J:  r_.o(j~) #-0, to2(je.) = 1}1 
/3 = I{ j :  co(js) =o}1 
"/= I{J: co(js) #0, to2(j6) = "  l }1 
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Let k, 13 be nonnegative integers and a = (a . ,  a2, a3), 7' = (7'!, 7'2, 7'3) 
be nonnegative integer triples. If 

a + fl+ 7'--at +a~+ a3+ fl+ 7"l + 7'2+ 7'3=k 

we use the following notation for the multinomial coefficient 

a, fl, 7' tZl, 32, 33, fl, 7'!, 7'2, 7'3 ~tl! 32! 33! fl! 7'1! 7'2! 7'3! 

We also use the notation 

(~)~ (1 ' 3i)~ \2 ] =\~,] (1 - 3i) p -  

It follows from the multinomial formula that 

)-, k (1 3i) ~ " r 
- - -  1 ( 3 . 2 )  

a+/~+r=k Ct, fl, 7' 

If j= (jr ,j2,j3)eZ 3 and t=ke, then applying (3.2) gives 

A~((ae)V2j) =)-'. {f(o): Xk~(co) = (at)I/2j} 
to 

=a+/~+r=k ( ,fl,  
a - - y = j  

In a similar way, the amplitude distribution ft(x) for the one-dimensional 
Schr6dinger random walk Xt is given by 

( ::1" ,, - o, fk,f(ae')'/2Jt) = E at,  fl, 7',] \2] 
a l + ~ + y l = k  

a l  -- YI ~J l  

We now show that the components X',  r =  l, 2, 3, of  X are isomorphic 
copies of  Xt.  Let f i  (x) be the amplitude distribution of  X t. That is, 

f ' ,(x) =)-', {f((o): X~(o~)=x} =f(X~ = x )  

As in (3.3), we have 

fJk,((a6)t/2J') E k (1 - 3i) t3 " r = SiS2 
a+O+r=k a, fl, 7' 

a t  - ~'t = J !  



Schr6dinger and Dirac Quantum Random Walks 1983 

where 

and 

-, + r, <k [ k -  (a,  + 71)]! 51! 7J! 
a t  - ~' l  = J l  

where the summation in $2 is over 52, 53, fl, 72, 73 satisfying 

a2+  a 3 + f l +  72+ 7 3 = k - ( a l  + 7 0  

It follows from the multinomial formula that 

$2=(1  - i )  k-('~'+ r') 

Hence, letting fl ' = k - ( a l + 7 0  gives 

/ /:/" ,l - , ,  ( f  
+ + , k a l , f l ' , 7 1 1 \ 2 /  al /3' y =  

This is the same as (3.4), so X 1 has the same amplitude distribution as X]. 
The same result holds for X 2 and X 3. 

W e  have shown that the components X r of  X are one-dimensional 
Schr6dinger random walks. We now demonstrate the surprising result that 
the X r, r = 1, 2, 3, are not amplitude independent. Indeed, 

fd(a t ; ) ' /2( l ,  1, 1)] = f ( X ~  = (ae) I/2, X ~ =  (as) '/2, X ~ =  (a t )  '/~) = 0 

since otherwise we would have an to e f~ satisfying 

co(O)=(l,  1)=(2,  1)=(3 ,  l)  

which is impossible. On the other hand, 

f~((a6) ' /2) f~((a6)l /2)f3((a6) I/2) 

= f ( X ~ = ( a 6 ) l / 2 ) f ( X ~ = ( a e ) l / 2 ) f ( X ~ = ( a e ) l / 2 ) =  = - ~ 0  

Thus, in general, we have 

/ ,(x) ~ z~ (x')z~,(x~)f~,(~ 3 ) 

Because of  this, we cannot find the three-dimensional Schr6dinger distribu- 
tion using one-dimensional Sehr6dinger distributions. 
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I f  Y: fl--* C, we define the amplitude expectation of Y by 

E ( Y )  --- ~,, Y(o))f(to) 
a l  

If Y has the values y~ . . . . .  y. ,  it follows that 

E( Y) = Z y i f (  Y=yj )  (3.5) 

Let F, G: Q3 --} C and let 0 < s~ < t~ < s2 < t2_< N 2 be integers�9 Since " A,,X and 
A~X are amplitude independent, it follows as in classical probability theory 
that 

EtF(A'~',X)G(A',]X)] = EtF(A'2,X)IEtG(A'~]X)I 

For teT ,  we define the amplitude characteristic function r •3_., C by 

O,(y) = E(e 'rx') = E[exp i(y~ X~ + y2X~ +y3X~)] 

The next result derives an explicit expression for r  and uses this expres- 
sion to find another form for fi(x). 

Theorem 3.2. (a) The amplitude characteristic function is given by 

~k.(y) = ( 1 - 3 i ) + i . ~  cosyr 
r = l  

(b) The amplitude distribution has the form 

((a~)'/213 ~f f Ok'(y) exp[--i(ae)'/2Y " j] d3y fk '((a~)l/2J)=\ 27r ] 

where the integrals have limits - z / ( a e )  j/2 and z / (ae )  ~/2. 

Proof. (a) Applying independence and stationarity of increments, we 
have 

~Pk~(y) = E[exp(iy : Xk~)] 

= e{exp iy" [(X~-Xo) + ( X 2 , - X , )  +" �9 �9 + (Xk~--X(k-0,)]} 

�9 A6 X" �9 �9 exp iy (k- O~ ; = E(exp iy. X6 exp iy 26 . Akz X ~ 

= E(exp iy" X6)E(exp iy A2"X ~ E(exp iy k, . . . . .  a~k.  , )6X) 6 ] 

= [E(exp iv .  X~)] k 
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Now 

E(exp iy. X~) = Z [exp iy. X~(o~)lf(co) 
to 

i s i 3 
= (1 - 30 += Y'. exp[iy,(ae) I/2] += ~ exp[-iyr(at) I/2] 

l "  r = l  • r--:l 

3 

= ( 1 - 3 / ) + /  ~ cos yr(as) I/2 
r = l  

and the result follows. 
(b) Applying (3.5), we have for t=ke 

@t(Y) = ~, {exp[i(a~)l/2y �9 r]}f,((as)l/2r) 
rEZ  3 

which is a finite Fourier series. Taking the inverse transform gives the 
result. �9 

It is instructive to see what happens to the results of Theorem 3.2 when 
s--, 0. In this case we have 

@t (y )  ,,~(1 l'ag~y[[2) k~, (e-iat[lYl[2/2)k=e-iOtl'Yl[2/2 

Except for the factor i, this is the same as the characteristic function for 
Brownian motion. Moreover, for k #0,  we have 

Ac((ae)'/~]) 
112 3 

k 2~ / JJJ 

=(~2)S(expi"j'[2)-~-j 

where the integrals have limits -~r/(ae) 1/2 and tt/(ae) ~/2. Letting 

z - - ~  y-~ ] (~)1/2 
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gives 

1 eillJll2/2 k f~fe_i~lzll2 d3 z 
A . ( ( a ~ ) ' / ~ )  = 7r3(2k)3/2 

where the integrals have limits -~(k/2)l/2+j,/(2k) l/2 and ~r(k/2)l/2+j,/ 
(2k) m/2, r =  1, 2, 3. 

4. DIRAC RANDOM WALKS 

Let C4 be the complex Clifford algebra with identity 1 and generators 7 j', 
/t =0,  1, 2, 3, satisfying (70) 2= 1, (7~) 2= - l , j =  1, 2, 3, and 7"7v+ 7v7 ~' = 1, 
/z # v. Denoting the 2 x 2 identity matrix by /, we can represent (?4 as a 
Clifford algebra of 4 x 4 matrices in which 

1 = j 0 o 3 o,], 
where tTJ, j = 1, 2, 3, are the Pauli matrices 

o'[~ 4 o'--E'o -,~ 
However, our work will not depend on a particular representation. If  a is a 
four-vector, we use the notation a = 7~'a~,, where the summation convention 
is employed. If  

0 0 

then Dirac's equation has the form 

(i~- ~f(t, x)-ml)~/(t, x ) = 0  

where A(t, x) is the charge times the four-potential, m is the mass, and 
g:R4~ C4. 

As in Section 2, we let 8-- 1/N and define the discrete timeline 

T=  {0, e, 2e . . . . .  N2e} 

The discrete space lattice is now defined as Q3= sZ3. The sample space f~ = 
S r is the same as in Section 2. For r =  1, 2, 3, we now define X' :  Tx  t3--, Q3 
by 

k - I  

X'(ks, a)) = s ~, {a~2(je): r #0 ,  a~l(je) = r} 
j=o 
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if k # 0  and Xr(0, co) =0.  Finally, we define the random walk X: T x  f~ ~ Q3 
by 

X(t, 09)= (Xl(t, co), X2(t, co), X3(t, co)) 

Besides the change in the definition of  Q3 and X, the main difference 
between the Dirac and Schr6dinger random walks is that we now define the 
amplitude f as a C4-valued function. Let ao . . . . .  a6e C4 satisfy ~6=0 aj = 1 
and define f ' : S ~  C4 by f '(O)=ao, f ' ( ( j ,  1 ) )=a j , f ' ( ( j , - l ) )=a j+3 ,  j =  
1, 2, 3. As in Section 2, we define the ampli tudefunct ionf: f~ C4 by 

f(co) =f'[co(N2e)]f'[co((N 2 -  1 ) 6 ) ] - . .  f'[co(e)]f'[co(O)] 

It again follows by induction that for any distinct r~ e, . . . ,  r ,e~ T we have 

Z f'[co(r, e)] .  ' �9 f'[co(r.e)] = 1 (4.1) 
to 

Corresponding to the four-potential A(t, x) and te  T, y e  Q3, cocO, we 
define the C4 element 

V(t, y+ X,o(t)) = 1 - i67~ y+ Xo,(t)) +ml ]  

For te  T, define the propagator Kv.,: Qax f~ ~ C4 as follows: 

Kr, t(y, 60) = f'[co(N26)] " ' "  f '[co(t-  e)] V[ t -  6, y+ Xo,(t-  6)] 

• f'[co (t - 2e)] V[ t -  2~, y +X,o(t-  2t)]  �9 �9 �9 f'[co(0)] V(0, y) 

for k # 0  and Kv.o(y, co) =f(co). Letg:  •3 --, C4 be a function which we regard 
as the initial amplitude. The evolution Uv, tg:Q3~ C4 is defined by 

(Uv.tg)(x) = ~, {Kv,,(y, co)g(y) : y~ Q3, y +X,(co) = x} 

As in Section 2, we define the vectors eje R, j =  0 , . . . ,  6. 

Theorem 4.1. The evolution ~F( t, x) = ( Uv,,g)(x) satisfies the initial con- 
dition ~F(0, x ) = g ( x )  and the difference equation 

6 

W(t+ ~, x)= Y'. arV(t, x -  6e,)W(t, x -  6er) 
r ~ 0  

Proof. For the initial condition we have from (4.1) that 

W(O, x) = ~. f(co)g(x) = g(x) 
ID 
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To derive the difference equation, we have 

6 

tF(t+ 6, x)= ~ ~ Kv,,+~(y, oJr)g(y) 
r=O y,oJr 

where the co, satisfy the conditions stated in the proof  of  Theorem 2.1. If  
t + e e T, we have 

Kr, t + ~( y, COo) 

= f'[coo(N26)] ' ' '  f'[coo(t)] V(t, x)f'[a~o(t- 6)] 

X V[ t -  e, y+Xtoo(t- 6 ) ] - - -  f'(coo) V(0, y) 

For a fixed yeQ 3, we have by (4.1) that 

Kv,  t + , (  y ,  COo) 
too 

= ao V(t, x) E f ' [coo( t -  6)] V[ t -  6, y + Xo, o(t- 6 ) ] ' ' '  f'(coo) V(0, y) 
to o 

=noV(t, x) Y. {Kv,,(y, co): y+Xo,(t)=x} 
to 

Hence, 

Y. Kr, t+ ~(y, OJo)g(y)= aoV(t, x)~F(t, x) 
Y,to0 

In a similar way, for r = 1 , . . . ,  6, we have 

Kv,,+ ~( y, o~,)g(y) = a,V( t, x -  6e,)~F( t, x - eel) 
y,  tDr 

and the result follows. �9 

Corollary 4.2. ~F(t, x) satisfies the equation 

~e(t + 6, x) - ~ y) 

6 

[ .W( t ' x -6er ) -~P( t ' x ) - ]~ .  [u/(t ,x+6er)-~P(t,x)] 

r = l  6 r = l  6 

6 

- i ~ a,y~ x -  6er) + relieF(t, x -  6e,) (4.2) 
r = O  
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Proof Applying Theorem 4.1 gives 

V(t + 6, x) 

= a0[1 -- ieT~ x) +ml)]W(t, x) 
6 

+ ~ a~[1 - ieTo(~(t ,  x -  6e~)+ml)]q?(t, x -  ee,) 
r = l  

r = l  r = l  

6 

- i e  Y, a,y~ x -  ee,)+ m l] Vt(t, x -  ~e,) 
r=O 

and the result follows. [] 

That (4.2) is a discrete version of a generalized Dirac equation may be 
seen as follows. Suppose A(t, x)  is continuousand ~ has a differentiable 
extension ~,: R 4 ~ (74. Letting e:-* 0, we conclude that (4:2) corresponds to 
the partial differential equation 

' (4.3) 

Multiplying both sides of (4.3) by iy ~ gives 

V: O 3 O'~ _ m l ]  �9 i , y  ~ --+ ~. y~ ~(t ,  x) ~'(t, x) =0 J L\  a t  ,=~ OX'/ 
(4.4) 

Now (4.4) reduces to Dirac's equation if and only if 

7~ ~, r = 1 , 2 , 3  (4.5) 

There are many ways to realize (4.5), Three of the simplest are the following: 

a,=7~ ", r=1 ,2 ,3 ,  a,=O, r = 4 , 5 , 6  

a , = - 7 ~  ", r=4 ,5 ,6 ,  a ,=0 ,  r = 1 , 2 , 3  

ar =�89176 ", r=1,2,3,  a ,=- �89176  r, r = 4 , 5 , 6  
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A realization of (4.5) that becomes especially simple in the matrix representa- 
�9 tion is given by 

a, = �89 0 -  1)y ~, r =  1, 2, 3 
(4.6) 

a~ = �89 ~  1), r=4,  5, 6 

In the matrix representation, (4.6) becomes 

[o -o,] 
a , =  0 0 ' r = 4 , 5 , 6  

I f X  and f a r e  given as in this section, we call (X , f )  a Dirac random walk. 
As in Section 3, this corresponds to a free (and in this case) massless particle. 
We now briefly summarize the properties of (X , f ) .  Using arguments similar 
to those in Section 3, it can be shown that ( X , f )  is stationary with ampli- 
tude-independent increments. As in Section 3, we define the amplitude expec- 
tation E and the amplitude characteristic function ~Ft(y). In the next theorem 
we use the following notation. For yeR  3 we let 

ei~y = (e~Y ', et~y 2, eiey 3) 

We denote (l ,  l, I )ER 3 by 1 and cr stands for (o "1, a 2, r The proof of tbe 
next theorem is similar to that of Theorem 3.2. 

Theorem 4.3. Suppose the a, are given by (4.6). (a) The amplitude 
characteristic function is given by 

I (1-e-'~Y) �9 
~k~(Y)= (ei~Y-l) �9 o" I 

(b) The amplitude distribution has the form 

fkc(Sj)=(~Z)3fff~Pkc()')e-iCY'Jd3y 

where the integrals have limits - z / 8  and z /6 .  
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